Sunday 9 January 2022

Catalan number

 

Catalan number

   In combinatorial mathematics, the Catalan numbers are a sequence of natural numbers that occur in various counting problems, often involving recursively defined objects. They are named after the French-Belgian mathematician Eugène Charles Catalan (1814–1894).

The nth Catalan number can be expressed directly in terms of binomial coefficients The first Catalan numbers for n = 0, 1, 2, 3, ... are

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, ...

Applications in combinatorics

There are many counting problems in combinatorics whose solution is given by the Catalan numbers. The book Enumerative Combinatorics: Volume 2 by combinatorialist Richard P. Stanley contains a set of exercises which describe 66 different interpretations of the Catalan numbers. Following are some examples, with illustrations of the cases C3 = 5 and C4 = 14

  • Cn is the number of Dyck words[2] of length 2n. A Dyck word is a string consisting of n X's and n Y's such that no initial segment of the string has more Y's than X's. For example, the following are the Dyck words of length 6:           XXXYYY     XYXXYY     XYXYXY     XXYYXY     XXYXYY.
  • Re-interpreting the symbol X as an open parenthesis and Y as a close parenthesis, Cn counts the number of expressions containing n pairs of parentheses which are correctly matched
  •                     ((()))     ()(())     ()()()     (())()     (()())
  • Cn is the number of different ways n + 1 factors can be completely parenthesized (or the number of ways of associating n applications of a binary operator, as in the matrix chain multiplication problem). For n = 3, for example, we have the following five different parenthesizations of four factors:       ((ab)c)d     (a(bc))d     (ab)(cd)     a((bc)d)     a(b(cd))



Also, the interior of the correctly matching closing Y for the first X of a Dyck word contains the description of the left subtree, with the exterior describing the right subtree.

  • Cn is the number of non-isomorphic ordered (or plane) trees with n + 1 vertices.[3] See encoding general trees as binary trees.
  • Cn is the number of monotonic lattice paths along the edges of a grid with n × n square cells, which do not pass above the diagonal. A monotonic path is one which starts in the lower left corner, finishes in the upper right corner, and consists entirely of edges pointing rightwards or upwards. Counting such paths is equivalent to counting Dyck words: X stands for "move right" and Y stands for "move up".

The following diagrams show the case n = 4:

This can be represented by listing the Catalan elements by column height:

The dark triangle is the root node, the light triangles correspond to internal nodes of the binary trees, and the green bars are the leaves.
[0,0,0,0] [0,0,0,1] [0,0,0,2] [0,0,1,1]
[0,1,1,1] [0,0,1,2] [0,0,0,3] [0,1,1,2] [0,0,2,2] [0,0,1,3]
[0,0,2,3] [0,1,1,3] [0,1,2,2] [0,1,2,3]
  • convex polygon with n + 2 sides can be cut into triangles by connecting vertices with non-crossing line segments (a form of polygon triangulation). The number of triangles formed is n and the number of different ways that this can be achieved is Cn. The following hexagons illustrate the case n = 4:
Catalan number 4x4 grid example.svg
  • Cn is the number of stack-sortable permutations of {1, ..., n}. A permutation w is called stack-sortable if S(w) = (1, ..., n), where S(w) is defined recursively as follows: write w = unv where n is the largest element in w and u and v are shorter sequences, and set S(w) = S(u)S(v)n, with S being the identity for one-element sequences.
  • Cn is the number of permutations of {1, ..., n} that avoid the permutation pattern 123 (or, alternatively, any of the other patterns of length 3); that is, the number of permutations with no three-term increasing subsequence. For n = 3, these permutations are 132, 213, 231, 312 and 321. For n = 4, they are 1432, 2143, 2413, 2431, 3142, 3214, 3241, 3412, 3421, 4132, 4213, 4231, 4312 and 4321.
  • Cn is the number of noncrossing partitions of the set {1, ..., n}. A fortioriCn never exceeds the nth Bell numberCn is also the number of noncrossing partitions of the set {1, ..., 2n} in which every block is of size 2. The conjunction of these two facts may be used in a proof by mathematical induction that all of the free cumulants of degree more than 2 of the Wigner semicircle law are zero. This law is important in free probability theory and the theory of random matrices.
  • Cn is the number of ways to tile a stairstep shape of height n with n rectangles. Cutting across the anti-diagonal and looking at only the edges gives full binary trees. The following figure illustrates the case n = 4:

No comments:

Post a Comment