Tuesday, 29 June 2021

 

Abstract   algebra

This article is about the branch of mathematics. For the Swedish band, see Abstract Algebra.

"Modern algebra" redirects here. For van der  Waerden's book, see Moderne  Algebra.

In algebra, which is a broad division of mathematicsabstract algebra (occasionally called modern algebra) is the study of algebraic structures. Algebraic structures include groupsringsfieldsmodulesvector spaceslattices, and algebras. The term abstract algebra was coined in the early 20th century to distinguish this area of study from the other parts of algebra.

Algebraic structures, with their associated homomorphisms, form mathematical categoriesCategory theory is a formalism that allows a unified way for expressing properties and constructions that are similar for various structures.

Universal algebra is a related subject that studies types of algebraic structures as single objects. For example, the structure of groups is a single object in universal algebra, which is called variety of groups.

Early group theory

There were several threads in the early development of group theory, in modern language loosely corresponding to number theorytheory of equations, and geometry.

Leonhard Euler considered algebraic operations on numbers modulo an integer—modular arithmetic—in his generalization of Fermat's little theorem. These investigations were taken much further by Carl Friedrich Gauss, who considered the structure of multiplicative groups of residues mod n and established many properties of cyclic and more general abelian groups that arise in this way. In his investigations of composition of binary quadratic forms, Gauss explicitly stated the associative law for the composition of forms, but like Euler before him, he seems to have been more interested in concrete results than in general theory. In 1870, Leopold Kronecker gave a definition of an abelian group in the context of ideal class groups of a number field, generalizing Gauss's work; but it appears he did not tie his definition with previous work on groups, particularly permutation groups. In 1882, considering the same question, Heinrich M. Weber realized the connection and gave a similar definition that involved the cancellation property but omitted the existence of the inverse element, which was sufficient in his context (finite group)

Modern algebra

The end of the 19th and the beginning of the 20th century saw a shift in the methodology of mathematics. Abstract algebra emerged around the start of the 20th century, under the name modern algebra. Its study was part of the drive for more intellectual rigor in mathematics. Initially, the assumptions in classical algebra, on which the whole of mathematics (and major parts of the natural sciences) depend, took the form of axiomatic systems. No longer satisfied with establishing properties of concrete objects, mathematicians started to turn their attention to general theory. Formal definitions of certain algebraic structures began to emerge in the 19th century. For example, results about various groups of permutations came to be seen as instances of general theorems that concern a general notion of an abstract group. Questions of structure and classification of various mathematical objects came to forefront.

These processes were occurring throughout all of mathematics, but became especially pronounced in algebra. Formal definition through primitive operations and axioms were proposed for many basic algebraic structures, such as groupsrings, and fields. Hence such things as group theory and ring theory took their places in pure mathematics. The algebraic investigations of general fields by Ernst Steinitz and of commutative and then general rings by David HilbertEmil Artin and Emmy Noether, building up on the work of Ernst KummerLeopold Kronecker and Richard Dedekind, who had considered ideals in commutative rings, and of Georg Frobenius and Issai Schur, concerning representation theory of groups, came to define abstract algebra. These developments of the last quarter of the 19th century and the first quarter of 20th century were systematically exposed in Bartel van der Waerden's Moderne Algebra, the two-volume monograph published in 1930–1931 that forever changed for the mathematical world the meaning of the word algebra from the theory of equations to the theory of algebraic structures.

Examples involving several operations include:

·         Ring

·         Field

·         Module

·         Vector space

·         Algebra over a field

·         Associative algebra

·         Lie algebra

·         Lattice

·         Boolean algebra

Applications

 

·         Because of its generality, abstract algebra is used in many fields of mathematics and science. For instance, algebraic topology uses algebraic objects to study topologies. The PoincarĂ© conjecture, proved in 2003, asserts that the fundamental group of a manifold, which encodes information about connectedness, can be used to determine whether a manifold is a sphere or not. Algebraic number theory studies various number rings that generalize the set of integers. Using tools of algebraic number theory, Andrew Wiles proved Fermat's Last Theorem.

·         In physics, groups are used to represent symmetry operations, and the usage of group theory could simplify differential equations. In gauge theory, the requirement of local symmetry can be used to deduce the equations describing a system. The groups that describe those symmetries are Lie groups, and the study of Lie groups and Lie algebras reveals much about the physical system; for instance, the number of force carriers in a theory is equal to the dimension of the Lie algebra, and these bosons interact with the force they mediate if the Lie algebra is nonabelian.